References for: A history of the calculus


Version for printing
  1. K Andersen, Precalculus, 1635-1665, in I Grattan-Guinness (ed.), Companion Encyclopedia of the History and Philosophy of the Mathematical Sciences (London, 1994), 292-307.
  2. R T W Arthur, Newton's fluxions and equably flowing time, Stud. Hist. Philos. Sci. 26 (2) (1995), 323-351.
  3. M E Baron, The origins of the infinitesimal calculus (New York, 1987).
  4. M Blay, Deux moments de la critique du calcul infinitésimal : Michel Rolle et George Berkeley : Etudes sur l'histoire du calcul infinitésimal, Rev. Histoire Sci. 39 (3) (1986), 223-253.
  5. C B Boyer, The History of the Calculus and Its Conceptual Development (New York, 1959).
  6. W Breidert, Berkeleys Kritik an der Infinitesimalrechnung, in 300 Jahre 'Nova methodus' von G W Leibniz (1684-1984) (Wiesbaden, 1986), 185-191.
  7. C H Edwards, The Historical Development of the Calculus (New York, 1979).
  8. J O Fleckenstein, The line of descent of the infinitesimal calculus in the history of ideas, Arch. Internat. Hist. Sci. (N.S.) 3 (1950), 542-554.
  9. E Giusti, A comparison of infinitesimal calculus in Leibniz and Newton (Italian), Rend. Sem. Mat. Univ. Politec. Torino 46 (1) (1988), 1-29.
  10. N Guicciardini, Three traditions in the calculus : Newton, Leibniz and Lagrange, in I Grattan-Guinness (ed.), Companion Encyclopedia of the History and Philosophy of the Mathematical Sciences (London, 1994), 308-317.
  11. N Guicciardini, The Development of Newtonian Calculus in Britain, 1700-1800 (Cambridge, 1989).
  12. T Guitard, On an episode in the history of the integral calculus, Historia Mathematica 14 (2) (1987), 215-219.
  13. P Kitcher, Fluxions, limits, and infinite littlenesse : A study of Newton's presentation of the calculus, Isis 64 (221) (1973), 33-49.
  14. S Krämer, Zur Begründung des Infinitesimalkalküls durch Leibniz, Philos. Natur. 28 (2) (1991), 117-146.
  15. A Pérez de Laborda, Newtons Fluxionsrechnung im Vergleich zu Leibniz' Infinitesimalkalkül, in 300 Jahre 'Nova methodus' von G W Leibniz (1684-1984) (Wiesbaden, 1986), 239-257.
  16. J A van Maanen, Die Mathematik in den Niederlanden im 17. Jahrhundert und ihre Rolle in der Entwicklungsgeschichte der Infinitesimalrechnung, in 300 Jahre 'Nova methodus' von G W Leibniz (1684-1984) (Wiesbaden, 1986), 1-13.
  17. A Nikolic, Space and time in the apparatus of infinitesimal calculus, Zb. Rad. Prirod.-Mat. Fak. Ser. Mat. 23 (1) (1993), 199-218.
  18. L Pepe, Les mathématiciens italiens et le calcul infinitésimal au début du XVIIIe siècle, in 300 Jahre 'Nova methodus' von G W Leibniz (1684-1984) (Wiesbaden, 1986), 192-201.
  19. L Pepe, The infinitesimal calculus in Italy at the beginning of the 18th century (Italian), Boll. Storia Sci. Mat. 1 (2) (1981), 43-101.
  20. J Pieters, Origines de la découverte par Leibniz du calcul infinitésimal, in Cahiers du Centre de Logique 2 (Louvain-la-Neuve, 1981), 1-22.
  21. A Rosenthal, The history of calculus, The American Mathematical Monthly 58 (1951), 75-86.
  22. C J Scriba, The inverse method of tangents. A dialogue between Leibniz and Newton (1675-1677), Archive for History of Exact Sciences 2 (1964), 113-137.
  23. A B Shtykan, On the question of the origin of the differential and integral calculus (Russian), Voprosy Istor. Estestvoznan. i Tekhn. (3) (1986), 87-93.
  24. G C Smith, Thomas Bayes and fluxions, Historia Mathematica 7 (4) (1980), 379-388.
  25. R Thiele, Carnots Betrachtungen über die Grundlagen der Infinitesimalrechnung, in Rechnen mit dem Unendlichen (Basel, 1990), 79-94.
  26. O Toeplitz, The Calculus: A Genetic Approach (1963).
  27. J Vernet, The infinitesimal calculus and Spanish mathematics of the 18th century (Spanish), Arch. Internat. Histoire Sci. 25 (97) (1975), 304-308.
  28. D T Whiteside, Patterns of mathematical thought in the later seventeenth century, Archive for History of Exact Sciences 1 (1960), 179-388.

JOC/EFR February 1996

The URL of this page is:
http://www-history.mcs.st-andrews.ac.uk/HistTopics/References/The_rise_of_calculus.html