Residual Finiteness of Monoids, Associated Actions and Groups

Nik Ruskuc (joint work with Robert Gray)

nik@mcs.st-and.ac.uk

School of Mathematics and Statistics, University of St Andrews

Newcastle, 27 Nov 2008
Residual Finiteness (1)

Definition

An algebraic structure A is residually finite if any, and hence all, of the following equivalent conditions hold:

- For all $x, y \in A$, $x \neq y$, there exists a homomorphism $f: A \to B$, B finite, such that $f(x) \neq f(y)$.

- For all $x, y \in A$, $x \neq y$, there exists a finite index congruence ρ which separates x and y, i.e. $(x, y) \not\in \rho$.

- The intersection of all finite index congruences of A is trivial.

This applies to: groups, semigroups/monoids, actions, ...
Residual Finiteness (1)

Definition
An algebraic structure A is residually finite if any, and hence all, of the following equivalent conditions hold:

1. For all $x, y \in A$, $x \neq y$, there exists a homomorphism $f: A \to B$, B finite, such that $f(x) \neq f(y)$.

2. For all $x, y \in A$, $x \neq y$, there exists a finite index congruence ρ which separates x and y, i.e. $(x, y) \not\in \rho$.

3. The intersection of all finite index congruences of A is trivial.

This applies to: groups, semigroups/monoids, actions, ...
Residual Finiteness (1)

Definition
An algebraic structure A is residually finite if any, and hence all, of the following equivalent conditions hold:

- For all $x, y \in A, x \neq y$, there exists a homomorphism $f : A \to B$, B finite, such that $f(x) \neq f(y)$.
Definition

An algebraic structure A is residually finite if any, and hence all, of the following equivalent conditions hold:

- For all $x, y \in A$, $x \neq y$, there exists a homomorphism $f : A \to B$, B finite, such that $f(x) \neq f(y)$.
- For all $x, y \in A$, $x \neq y$, there exists a finite index congruence ρ which separates x and y, i.e. $(x, y) \notin \rho$.
Definition
An algebraic structure A is residually finite if any, and hence all, of the following equivalent conditions hold:

- For all $x, y \in A$, $x \neq y$, there exists a homomorphism $f : A \rightarrow B$, B finite, such that $f(x) \neq f(y)$.
- For all $x, y \in A$, $x \neq y$, there exists a finite index congruence ρ which separates x and y, i.e. $(x, y) \notin \rho$.
- The intersection of all finite index congruences of A is trivial.
Residual Finiteness (1)

Definition
An algebraic structure A is residually finite if any, and hence all, of the following equivalent conditions hold:

- For all $x, y \in A, x \neq y$, there exists a homomorphism $f : A \to B$, B finite, such that $f(x) \neq f(y)$.
- For all $x, y \in A, x \neq y$, there exists a finite index congruence ρ which separates x and y, i.e. $(x, y) \notin \rho$.
- The intersection of all finite index congruences of A is trivial.

This applies to:

Nik Ruskuc: Residual Finiteness
Definition
An algebraic structure A is residually finite if any, and hence all, of the following equivalent conditions hold:

- For all $x, y \in A$, $x \neq y$, there exists a homomorphism $f : A \rightarrow B$, B finite, such that $f(x) \neq f(y)$.
- For all $x, y \in A$, $x \neq y$, there exists a finite index congruence ρ which separates x and y, i.e. $(x, y) \notin \rho$.
- The intersection of all finite index congruences of A is trivial.

This applies to: groups,
Residual Finiteness (1)

Definition
An algebraic structure A is residually finite if any, and hence all, of the following equivalent conditions hold:

- For all $x, y \in A$, $x \neq y$, there exists a homomorphism $f : A \to B$, B finite, such that $f(x) \neq f(y)$.
- For all $x, y \in A$, $x \neq y$, there exists a finite index congruence ρ which separates x and y, i.e. $(x, y) \notin \rho$.
- The intersection of all finite index congruences of A is trivial.

This applies to: groups, semigroups/monoids,
Residual Finiteness (1)

Definition
An algebraic structure A is residually finite if any, and hence all, of the following equivalent conditions hold:

▶ For all $x, y \in A$, $x \neq y$, there exists a homomorphism $f : A \to B$, B finite, such that $f(x) \neq f(y)$.

▶ For all $x, y \in A$, $x \neq y$, there exists a finite index congruence ρ which separates x and y, i.e. $(x, y) \notin \rho$.

▶ The intersection of all finite index congruences of A is trivial.

This applies to: groups, semigroups/monoids, actions,
Definition
An algebraic structure A is residually finite if any, and hence all, of the following equivalent conditions hold:

▶ For all $x, y \in A$, $x \neq y$, there exists a homomorphism $f : A \to B$, B finite, such that $f(x) \neq f(y)$.
▶ For all $x, y \in A$, $x \neq y$, there exists a finite index congruence ρ which separates x and y, i.e. $(x, y) \notin \rho$.
▶ The intersection of all finite index congruences of A is trivial.

This applies to: groups, semigroups/monoids, actions, ...
Examples
- finite structures (r.f. is a finiteness condition);
- free – semigroups/ groups/ commutative semigroups/ abelian groups/inverse semigroups;
- infinite simple (congruence free) structures are not r.f.

Facts
- Closed under taking substructures (obvious).
- Closed under finite index extensions (in groups), finite Rees index extensions (in semigroups, NR, Thomas), direct products (in general).
- A finitely presented, r.f. algebraic structure has a soluble word problem (Mostowski 66, Evans 70).
Residual Finiteness (2)

Examples

- finite structures (r.f. is a finiteness condition);
Examples

- finite structures (r.f. is a finiteness condition);
- free – semigroups/ groups/ commutative semigroups/ abelian groups/inverse semigroups;
Examples

- finite structures (r.f. is a finiteness condition);
- free – semigroups/ groups/ commutative semigroups/ abelian groups/inverse semigroups;
- infinite simple (congruence free) structures are not r.f.
Residual Finiteness (2)

Examples

- finite structures (r.f. is a finiteness condition);
- free – semigroups/ groups/ commutative semigroups/ abelian groups/inverse semigroups;
- infinite simple (congruence free) structures are not r.f.

Facts

- *Closed under taking substructures (obvious).*
Residual Finiteness (2)

Examples

▶ finite structures (r.f. is a finiteness condition);
▶ free – semigroups/ groups/ commutative semigroups/ abelian groups/inverse semigroups;
▶ infinite simple (congruence free) structures are not r.f.

Facts

▶ Closed under taking substructures (obvious).
▶ Closed under finite index extensions (in groups), finite Rees index extensions (in semigroups, NR, Thomas), direct products (in general).
Examples

- finite structures (r.f. is a finiteness condition);
- free – semigroups/ groups/ commutative semigroups/ abelian groups/inverse semigroups;
- infinite simple (congruence free) structures are not r.f.

Facts

- Closed under taking substructures (obvious).
- Closed under finite index extensions (in groups), finite Rees index extensions (in semigroups, NR, Thomas), direct products (in general).
- A finitely presented, r.f. algebraic structure has a soluble word problem (Mostowski 66, Evans 70).
Residual Finiteness (3)

- D. Segal, Residually finite groups, 1990.
- A series of papers by Golubov et al., 1970s.
Any monoid S acts on itself via $(x, s) \mapsto xs$.

\mathcal{R}-classes := the strong orbits of this action.

\mathcal{R} is a left congruence (i.e. $s \in S$ & $(x, y) \in \mathcal{R} \Rightarrow (sx, sy) \in \mathcal{R}$).

Hence, S acts from the left on the set S/\mathcal{R} of \mathcal{R}-classes.

Left/right duality $\rightarrow \mathcal{L}$-classes, right action on S/\mathcal{L}.

$\mathcal{H} = \mathcal{R} \cap \mathcal{L}$.

Nik Ruskuc: Residual Finiteness
Any monoid S acts on itself via $(x, s) \mapsto xs$.
Any monoid S acts on itself via $(x, s) \mapsto xs$.

\mathcal{R}-classes := the strong orbits of this action.
Any monoid S acts on itself via $(x, s) \mapsto xs$.

\mathcal{R}-classes := the strong orbits of this action.

\mathcal{R} is a left congruence (i.e. $s \in S$ & $(x, y) \in \mathcal{R} \Rightarrow (sx, sy) \in \mathcal{R}$).
Any monoid \(S \) acts on itself via \((x, s) \mapsto xs \).

\(\mathcal{R} \)-classes := the strong orbits of this action.

\(\mathcal{R} \) is a left congruence (i.e. \(s \in S \) & \((x, y) \in \mathcal{R} \) \(\Rightarrow (sx, sy) \in \mathcal{R} \)).

Hence, \(S \) acts from the left on the set \(S/\mathcal{R} \) of \(\mathcal{R} \)-classes.
Any monoid S acts on itself via $(x, s) \mapsto xs$.

\mathcal{R}-classes := the strong orbits of this action.

\mathcal{R} is a left congruence (i.e. $s \in S \& (x, y) \in \mathcal{R} \Rightarrow (sx, sy) \in \mathcal{R}$).

Hence, S acts from the left on the set S/\mathcal{R} of \mathcal{R}-classes.

Left/right duality $\rightarrow \mathcal{L}$-classes, right action on S/\mathcal{L}.

Any monoid S acts on itself via $(x, s) \mapsto xs$.

\mathcal{R}-classes := the strong orbits of this action.

\mathcal{R} is a left congruence (i.e. $s \in S \& (x, y) \in \mathcal{R} \Rightarrow (sx, sy) \in \mathcal{R}$).

Hence, S acts from the left on the set S/\mathcal{R} of \mathcal{R}-classes.

Left/right duality $\Rightarrow \mathcal{L}$-classes, right action on S/\mathcal{L}.

$\mathcal{H} = \mathcal{R} \cap \mathcal{L}$.
Example: $S, S/\mathcal{H}, S/\mathcal{R}, S/\mathcal{L}$

$$S = \langle a, b, c, h \mid \begin{array}{l}
aba = b, \ bab = a, \ c^3 = c, \ c^2 h = h, \ ch = ha^2, \\
ac = bc = ca = cb = ah = bh = hc = h^2 = 0 \rangle.$$
Schützenberger Groups (1)

Let $h \in S$, and let H be the H-class of h.

$\text{Stab}_r(h) = \{ s \in S : Hs = H \} \leq S$.

$s \sim t \iff hs = ht$ – a congruence on $\text{Stab}_r(h)$.

$\Gamma_r(h) = \text{Stab}_r(h) / \sim$.

$\Gamma_l(h)$ – defined dually.
Schützenberger Groups (1)

Let \(h \in S \), and let \(H \) be the \(\mathcal{H} \)-class of \(h \).
Let \(h \in S \), and let \(H \) be the \(\mathcal{H} \)-class of \(h \).

\[
\text{Stab}_r(h) = \{ s \in S : Hs = H \} \leq S.
\]
Schützenberger Groups (1)

Let $h \in S$, and let H be the \mathcal{H}-class of h.

$\text{Stab}_r(h) = \{s \in S : Hs = H\} \leq S$.

$s \sim t \iff hs = ht$ – a congruence on $\text{Stab}_r(h)$.
Let \(h \in S \), and let \(H \) be the \(\mathcal{H} \)-class of \(h \).

\[
\text{Stab}_r(h) = \{ s \in S : Hs = H \} \leq S.
\]

\(s \sim t \iff hs = ht \) – a congruence on \(\text{Stab}_r(h) \).

\[
\Gamma_r(h) = \text{Stab}_r(h)/\sim.
\]
Let $h \in S$, and let H be the \mathcal{H}-class of h.

$\text{Stab}_r(h) = \{s \in S : Hs = H\} \leq S$.

$s \sim t \iff hs = ht$ – a congruence on $\text{Stab}_r(h)$.

$\Gamma_r(h) = \text{Stab}_r(h)/\sim$.

$\Gamma_l(h)$ – defined dually.
Schützenberger Groups (2)

- $\Gamma_r(h)$ is a group acting regularly on H.
- $|\Gamma_r(h)| = |H|$.
- $\Gamma_r(h) \sim \Gamma_l(h')$.
- $(h, h') \in R \Rightarrow \Gamma_r(h) \sim \Gamma_l(h')$.

Nik Ruskuc: Residual Finiteness
Schützenberger Groups (2)

Facts

- $\Gamma_r(h)$ is a group acting regularly on H.

Nik Ruskuc: Residual Finiteness
Facts

- $\Gamma_r(h)$ is a group acting regularly on H.
- $|\Gamma_r(h)| = |H|$.

Schützenberger Groups (2)
Facts

- $\Gamma_r(h)$ is a group acting regularly on H.
- $|\Gamma_r(h)| = |H|$.
- $\Gamma_r(h) \cong \Gamma_l(h)$.

Schützenberger Groups (2)
Schützenberger Groups (2)

Facts

- \(\Gamma_r(h) \) is a group acting regularly on \(H \).
- \(|\Gamma_r(h)| = |H| \).
- \(\Gamma_r(h) \cong \Gamma_l(h) \).
- \((h, h') \in \mathcal{R} \Rightarrow \Gamma_r(h) \cong \Gamma_l(h') \).
Idempotents, Subgroups, Regular Monoids

Fact
If \(h \in S \) is an idempotent then its \(H \)-class \(H \) is the largest subgroup of \(S \) containing \(h \) and \(\Gamma_r(h) \sim = H \).

Definition
A monoid \(S \) is regular if (\(\forall x \)) (\(\exists y \)) (\(xyx = x \)).

Fact
A monoid is regular iff every \(R \)-class contains an idempotent.
Fact

If $h \in S$ is an idempotent then its \mathcal{H}-class H is the largest subgroup of S containing h and $\Gamma_r(h) \cong H$.

Fact
If \(h \in S \) is an idempotent then its \(\mathcal{H} \)-class \(H \) is the largest subgroup of \(S \) containing \(h \) and \(\Gamma_r(h) \cong H \).

Definition
A monoid \(S \) is regular if \((\forall x)(\exists y)(xyx = x) \).
Fact
If \(h \in S \) is an idempotent then its \(\mathcal{H} \)-class \(H \) is the largest subgroup of \(S \) containing \(h \) and \(\Gamma_r(h) \cong H \).

Definition
A monoid \(S \) is regular if \((\forall x)(\exists y)(xyx = x) \).

Fact
A monoid is regular iff every \(\mathcal{R} \)-class contains an idempotent.
A monoid is 'composed' out of two actions (on S/R and S/L) and a bunch of groups ($\Gamma_r(h), h \in H$).

Is the following in any sense true:

S is residually finite if and only if the actions on S/R and S/L, and all the Schützenberger groups $\Gamma_r(h)$ ($h \in H$) are residually finite?

After all: S is finite iff S/R, S/L and all $\Gamma_r(h)$ are finite and r.f. is a finiteness condition.
In a Nutshell . . .

A monoid is ‘composed’ out of two actions (on S/R and S/L) and a bunch of groups $(\Gamma_r(h), h \in H)$.
In a Nutshell . . .

A monoid is ‘composed’ out of two actions (on S/R and S/L) and a bunch of groups ($\Gamma_r(h)$, $h \in H$).

Is the following in any sense true:
A monoid is ‘composed’ out of two actions (on S/R and S/L) and a bunch of groups $(\Gamma_r(h), h \in H)$.

Is the following in any sense true:

S is residually finite if and only if the actions on S/R and S/L, and all the Schützenberger groups $\Gamma_r(h)$ ($h \in H$) are residually finite?
A monoid is ‘composed’ out of two actions (on S/R and S/L) and a bunch of groups ($\Gamma_r(h), h \in H$).

Is the following in any sense true:

S is residually finite if and only if the actions on S/R and S/L, and all the Schützenberger groups $\Gamma_r(h) (h \in H)$ are residually finite?

😊 After all: S is finite iff S/R, S/L and all $\Gamma_r(h)$ are finite and r.f. is a finiteness condition. 😊
Positive Results: Regular Monoids (1)

Definition

A monoid S is of finite J-type if every J-class contains only finitely many R- and L-classes.

Theorem (Golubov 75)

Let S be a regular monoid of finite J-type. Then S is residually finite if and only if all its maximal subgroups (i.e. Schützenberger groups) are residually finite.

Proposition

If a regular monoid S is of finite J-type then its action on its R-classes is also residually finite.
Definition
A monoid S is of finite J-type if every J-class contains only finitely many R- and L-classes.

Theorem (Golubov 75)
Let S be a regular monoid of finite J-type. Then S is residually finite if and only if all its maximal subgroups (i.e. Schützenberger groups) are residually finite.

Proposition
If a regular monoid S is of finite J-type then its action on its R-classes is also residually finite.
Definition
A monoid S is of finite J-type if every J-class contains only finitely many R- and L-classes.

Theorem (Golubov 75)
Let S be a regular monoid of finite J-type. Then S is residually finite if and only if all its maximal subgroups (i.e. Schützenberger groups) are residually finite.
Definition
A monoid S is of finite J-type if every J-class contains only finitely many R- and L-classes.

Theorem (Golubov 75)
Let S be a regular monoid of finite J-type. Then S is residually finite if and only if all its maximal subgroups (i.e. Schützenberger groups) are residually finite.

Proposition
If a regular monoid S is of finite J-type then its action on its R-classes is also residually finite.
Theorem

The action of a residually finite regular monoid on its \mathcal{L}-classes is residually finite.
Positive Results: Regular Monoids (2)

Theorem
The action of a residually finite regular monoid on its \mathcal{L}-classes is residually finite.

Sketch of Proof
Let L_s, L_t be two distinct \mathcal{L}-classes.
Positive Results: Regular Monoids (2)

Theorem
The action of a residually finite regular monoid on its L-classes is residually finite.

Sketch of Proof
Let L_s, L_t be two distinct L-classes.
Let e, f be idempotents s.t. $e \in L_s$, $f \in L_t$.
Theorem

The action of a residually finite regular monoid on its \mathcal{L}-classes is residually finite.

Sketch of Proof

Let L_s, L_t be two distinct \mathcal{L}-classes.
Let e, f be idempotents s.t. $e \in L_s, f \in L_t$.

General theory: $(e, f) \not\in \mathcal{L} \iff ef \neq e \lor fe \neq f$.
Theorem

The action of a residually finite regular monoid on its \mathcal{L}-classes is residually finite.

Sketch of Proof

Let L_s, L_t be two distinct \mathcal{L}-classes.
Let e, f be idempotents s.t. $e \in L_s, f \in L_t$.
General theory: $(e, f) \notin \mathcal{L} \iff ef \neq e \lor fe \neq f$.
Wlog suppose $ef \neq e$.
Theorem

The action of a residually finite regular monoid on its \mathcal{L}-classes is residually finite.

Sketch of Proof

Let L_s, L_t be two distinct \mathcal{L}-classes.
Let e, f be idempotents s.t. $e \in L_s, f \in L_t$.
General theory: $(e, f) \not\in \mathcal{L} \iff ef \neq e \vee fe \neq f$.
Wlog suppose $ef \neq e$.
Separate e, ef: $\phi : S \rightarrow T$, T finite, $\phi(ef) \neq \phi(e)$.

Theorem

The action of a residually finite regular monoid on its \mathcal{L}-classes is residually finite.

Sketch of Proof

Let L_s, L_t be two distinct \mathcal{L}-classes.
Let e, f be idempotents s.t. $e \in L_s, f \in L_t$.

General theory: $(e, f) \notin \mathcal{L} \iff ef \neq e \lor fe \neq f$.

Wlog suppose $ef \neq e$.
Separate e, ef: $\phi : S \to T$, T finite, $\phi(ef) \neq \phi(e)$.
Hence, in T, $(\phi(e), \phi(f)) \notin \mathcal{L}$.
Theorem
The action of a residually finite regular monoid on its \(\mathcal{L} \)-classes is residually finite.

Sketch of Proof
Let \(L_s, L_t \) be two distinct \(\mathcal{L} \)-classes.
Let \(e, f \) be idempotents s.t. \(e \in L_s, f \in L_t \).
General theory: \((e, f) \notin \mathcal{L} \iff ef \neq e \lor fe \neq f \).
Wlog suppose \(ef \neq e \).
Separate \(e, ef \): \(\phi : S \rightarrow T, T \) finite, \(\phi(ef) \neq \phi(e) \).
Hence, in \(T, (\phi(e), \phi(f)) \notin \mathcal{L} \).
The action of \(S \) on the \(\mathcal{L} \)-classes of \(T \) is a finite homomorphic image of the action of \(S \) on \(S/\mathcal{L} \) which separates \(L_s \) and \(L_t \).
Positive Results: General Monoids

Theorem
If S is a residually finite monoid then every Schützenberger group of S is residually finite.

Sketch of Proof
(sketch) Let s, t be distinct elements of $\Gamma_r(h)$. That means that $hs \neq ht$ in S.

Separate hs, ht: $\varphi: S \to T$, T finite, $\varphi(hs) \neq \varphi(ht)$.

This induces $\Gamma_r(h) \to \Gamma_r(\varphi(h))$ which separates s and t.

Nik Ruskuc: Residual Finiteness
Theorem

If S is a residually finite monoid then every Schützenberger group of S is residually finite.
Theorem

If S *is a residually finite monoid then every Schützenberger group of* S *is residually finite.*

Sketch of Proof

(sketch) Let s, t be distinct elements of $\Gamma_r(h)$.
Theorem

If S *is a residually finite monoid then every Schützenberger group of* S *is residually finite.*

Sketch of Proof

(sketch) Let \bar{s}, \bar{t} be distinct elements of $\Gamma_r(h)$. That means that $hs \neq ht$ in S.

Positive Results: General Monoids
Theorem

If S is a residually finite monoid then every Schützenberger group of S is residually finite.

Sketch of Proof

(sketch) Let \bar{s}, \bar{t} be distinct elements of $\Gamma_r(h)$. That means that $hs \neq ht$ in S. Separate hs, ht: $\phi : S \to T$, T finite, $\phi(hs) \neq \phi(ht)$.
Positive Results: General Monoids

Theorem

If S is a residually finite monoid then every Schützenberger group of S is residually finite.

Sketch of Proof

(sketch) Let \bar{s}, \bar{t} be distinct elements of $\Gamma_r(h)$. That means that $hs \neq ht$ in S.
Separate hs, ht: $\phi : S \to T$, T finite, $\phi(hs) \neq \phi(ht)$.
This induces $\Gamma_r(h) \to \Gamma_r(\phi(h))$ which separates \bar{s} and \bar{t}.
Summary (1)

<table>
<thead>
<tr>
<th>Properties of M</th>
<th>M r.f. \Rightarrow all $\Gamma(H)$ r.f.</th>
<th>M r.f. \Rightarrow M/L r.f.</th>
<th>all $\Gamma(H)$ r.f. & M/L, M/R r.f. \Rightarrow M r.f.</th>
</tr>
</thead>
<tbody>
<tr>
<td>general</td>
<td>arbitrary</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>regular</td>
<td></td>
<td></td>
</tr>
<tr>
<td>finite J-type</td>
<td>arbitrary</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>regular</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Summary (1)

<table>
<thead>
<tr>
<th>Properties of M</th>
<th>M r.f. \Rightarrow all $\Gamma(H)$ r.f.</th>
<th>M r.f. \Rightarrow M/\mathcal{L} r.f.</th>
<th>all $\Gamma(H)$ r.f. & M/\mathcal{L}, M/\mathcal{R} r.f. \Rightarrow M r.f.</th>
</tr>
</thead>
<tbody>
<tr>
<td>general</td>
<td>arbitrary</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>regular</td>
<td></td>
<td></td>
</tr>
<tr>
<td>finite \mathcal{J}-type</td>
<td>arbitrary</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>regular</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Summary (1)

<table>
<thead>
<tr>
<th>Properties of (M)</th>
<th>(M) r.f. ⇒ all (\Gamma(H)) r.f.</th>
<th>(M) r.f. ⇒ (M/L) r.f.</th>
<th>all (\Gamma(H)) r.f. & (M/L, M/R) r.f. ⇒ (M) r.f.</th>
</tr>
</thead>
<tbody>
<tr>
<td>general</td>
<td>arbitrary</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td></td>
<td>regular</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>finite (J)-type</td>
<td>arbitrary</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td></td>
<td>regular</td>
<td>✓</td>
<td></td>
</tr>
</tbody>
</table>

Nik Ruskuc: Residual Finiteness
<table>
<thead>
<tr>
<th>Properties of M</th>
<th>M r.f.\Rightarrow all $\Gamma(H)$ r.f.</th>
<th>M r.f.$\Rightarrow M/\mathcal{L}$ r.f.</th>
<th>all $\Gamma(H)$ r.f. & M/\mathcal{L}, M/\mathcal{R} r.f. $\Rightarrow M$ r.f.</th>
</tr>
</thead>
<tbody>
<tr>
<td>general</td>
<td>arbitrary</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td></td>
<td>regular</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>finite \mathcal{J}-type</td>
<td>arbitrary</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td></td>
<td>regular</td>
<td>✓</td>
<td>✓</td>
</tr>
</tbody>
</table>
Summary (1)

<table>
<thead>
<tr>
<th>Properties of M</th>
<th>M r.f. ⇒ all $\Gamma(H)$ r.f.</th>
<th>M r.f. ⇒ M/\mathcal{L} r.f.</th>
<th>all $\Gamma(H)$ r.f. & M/\mathcal{L}, M/\mathcal{R} r.f. ⇒ M r.f.</th>
</tr>
</thead>
<tbody>
<tr>
<td>general</td>
<td>arbitrary</td>
<td>![checkmark]</td>
<td>![checkmark]</td>
</tr>
<tr>
<td></td>
<td>regular</td>
<td>![checkmark]</td>
<td>![checkmark]</td>
</tr>
<tr>
<td>finite \mathcal{J}-type</td>
<td>arbitrary</td>
<td>![checkmark]</td>
<td>![checkmark]</td>
</tr>
<tr>
<td></td>
<td>regular</td>
<td>![checkmark]</td>
<td>![checkmark]</td>
</tr>
</tbody>
</table>

Nik Ruskuc: Residual Finiteness
Rees Matrix Semigroups (1)

Ingredients:
▶ a group G
▶ two index sets I, J
▶ $P = (p_{ji})_{j \in J, i \in I}$ – a $J \times I$ matrix with entries from G;

New semigroup: $S = M[G; I, J; P]$, on the set $I \times G \times J$, with multiplication $(i, g, j)(k, h, l) = (i, gp_{jk}h, l)$.
Ingredients:

Rees Matrix Semigroups (1)
Rees Matrix Semigroups (1)

Ingredients:

- a group G;
Rees Matrix Semigroups (1)

Ingredients:

- a group G;
- two index sets I, J;
Rees Matrix Semigroups (1)

Ingredients:
- a group G;
- two index sets I, J;
- $P = (p_{ji})_{j \in J, i \in I} =$ a $J \times I$ matrix with entries from G;
Rees Matrix Semigroups (1)

Ingredients:

- a group G;
- two index sets I, J;
- $P = (p_{ji})_{j \in J, i \in I}$ — a $J \times I$ matrix with entries from G;

New semigroup: $S = M[G; I, J; P]$, on the set $I \times G \times J$, with multiplication

$$(i, g, j)(k, h, l) = (i, gp_{jk}h, l).$$
Rees Matrix Semigroups (2)

\[I \cong S/R \]

\[J \cong S/L \]

Facts
▶ S is regular.
▶ L -classes are indexed by the set J.
▶ Every element acts as a constant mapping on S/R.
▶ The action of S on S/L is always residually finite.

Nik Ruskuc: Residual Finiteness
Rees Matrix Semigroups (2)

$J \cong S/L$

$J \cong S/L$

Facts

S is regular.
Rees Matrix Semigroups (2)

Facts

- S is regular.
- \mathcal{L}-classes are indexed by the set J.

$I \cong S/R$

$J \cong S/L$
Rees Matrix Semigroups (2)

\[I \cong S/R \]
\[J \cong S/L \]

Facts

- \(S \) is regular.
- \(\mathcal{L} \)-classes are indexed by the set \(J \).
- Every element acts as a constant mapping on \(S/\mathcal{L} \).
Rees Matrix Semigroups (2)

Facts

- S is regular.
- \mathcal{L}-classes are indexed by the set J.
- Every element acts as a constant mapping on S/\mathcal{L}.
- The action of S on S/\mathcal{L} is always residually finite.
Theorem (Golubov 72) A Rees matrix semigroup $M = [G; I, J; P]$ is residually finite if and only if G is residually finite and P has only finitely many non-proportional rows and columns.

Corollary There exists a non-residually finite regular semigroup in which the actions on S / R and S / L, and all the maximal subgroups are residually finite.
Rees Matrix Semigroups (3)

Theorem (Golubov 72)

A Rees matrix semigroup $M[G; I, J; P]$ is residually finite if and only if G is residually finite and P has only finitely many non-proportional rows and columns.
Theorem (Golubov 72)

A Rees matrix semigroup $M[G; I, J; P]$ is residually finite if and only if G is residually finite and P has only finitely many non-proportional rows and columns.

Corollary

There exists a non-residually finite regular semigroup in which the actions on S/R and S/L, and all the maximal subgroups are residually finite.
Another Construction (1)
Ingredients: A group G and a normal subgroup $N \trianglelefteq G$.
Another Construction (1)

Ingredients: A group G and a normal subgroup $N \trianglelefteq G$.

Let $\overline{N} = \{\overline{n} : n \in N\}$ be a copy of N.
Another Construction (1)

Ingredients: A group G and a normal subgroup $N \trianglelefteq G$.

Let $\overline{N} = \{ \overline{n} : n \in N \}$ be a copy of N.

New semigroup:

$$S(G, N) = \langle G, \overline{N}, h : \ hn = \overline{n}h, \ he_G = e_{\overline{N}}h = h, \ g\overline{n} = \overline{ng} = gh = h\overline{n} = 0 \ (g \in G, \ n \in N) \rangle.$$
Another Construction (2)

Facts

$S(G, N)$ is r.f. iff G is r.f.

The action of $S(G, N)$ on its L-classes is r.f. iff G/N is r.f.

Corollary

There exists a residually finite semigroup such that its action on the L-classes is not residually finite.

Nik Ruskuc: Residual Finiteness
Facts

- $S(G, N)$ is r.f. iff G is r.f.
Another Construction (2)

Facts

- \(S(G, N) \) is r.f. iff \(G \) is r.f.
- The action of \(S(G, N) \) on its \(\mathcal{L} \)-classes is r.f. iff \(G/N \) is r.f.
Another Construction (2)

Facts

- \(S(G, N) \) is r.f. iff \(G \) is r.f.
- The action of \(S(G, N) \) on its \(\mathcal{L} \)-classes is r.f. iff \(G/N \) is r.f.

Corollary

There exists a residually finite semigroup such that its action on the \(\mathcal{L} \)-classes is not residually finite.
One More Counter-example (1)

Let M be the commutative monoid with presentation $\langle a, a^{-1}, b, c, d, e (i \in \mathbb{Z}) \mid a a^{-1} = a^{-1} a = 1, b_i c_j = d, b_i c_j = a^{\tau}(j-i), b_i b_j = b_i c_j = b_i d = b_i e = c_j c_k = c_j d = c_j e = dd = de = ee = 0 \rangle$.

The R-/L-classes of M are:

- $A = \{a \pm p: p \in \mathbb{Z}\}$ – the group of units
- $B = \bigcup_{i \in \mathbb{Z}} B_i, B_i = Ab_i$
- $C = \bigcup_{i \in \mathbb{Z}} C_i, C_i = Ac_i$
- $D = Ad$, $E = Ae$, $\{0\}$.

Nik Ruskuc: Residual Finiteness
One More Counter-example (1)

Let M be the commutative monoid with presentation

$$\langle a, a^{-1}, b_i, c_i, d, e \ (i \in \mathbb{Z}) \mid \left. \begin{array}{l}
aa^{-1} = a^{-1}a = 1, \ b_ic_i = d, \ b_ic_j = a^{i-j}e \ (i \neq j), \\
bibj = b_ic_j = b_id = b_ie = c_je = dd = de = ee = 0 \\
(\ i, j, k \in \mathbb{Z} \rangle \right.$$

Nik Ruskuc: Residual Finiteness
Let M be the commutative monoid with presentation

$$\langle a, a^{-1}, b_i, c_i, d, e \ (i \in \mathbb{Z}) \mid aa^{-1} = a^{-1}a = 1, \ b_i c_i = d, \ b_i c_j = a^{\tau(j-i)} e \ (i \neq j), \ b_i b_j = b_i c_j = b_i d = b_i e = c_j c_k = c_j d = c_j e = dd = de = ee = 0 \ (i, j, k \in \mathbb{Z}) \rangle$$

The R-/ L-classes of M are:

$$A = \{ a^{\pm p} : p \in \mathbb{Z} \} - \text{the group of units}$$
$$B = \bigcup_{i \in \mathbb{Z}} B_i, \ B_i = Ab_i$$
$$C = \bigcup_{i \in \mathbb{Z}} C_i, \ C_i = Ac_i$$
$$D = Ad, \ E = Ae, \ \{0\}.$$
One More Counter-example (2)

The action of M on M/L is not residually finite.

Nik Ruskuc: Residual Finiteness
One More Counter-example (2)

The action of M on M/\mathcal{L} is not residually finite.
We want M to be residually finite.
One More Counter-example (3)

We want M to be residually finite.
We still have one free choice: the function $\tau : \mathbb{Z} \setminus \{0\} \rightarrow \mathbb{Z}$.
We want M to be residually finite.

We still have one free choice: the function $\tau : \mathbb{Z} \setminus \{0\} \rightarrow \mathbb{Z}$.

One choice that works is:

$$\tau(2^k(2r + 1)) = \frac{2}{3}(2^{2\lceil k/2 \rceil} - 1) \quad (k, r \in \mathbb{Z}, \ k \geq 0)$$
Let's introduce a really strong finiteness condition on the actions on S/R and S/L:

That certainly guarantees that the two actions will be residually finite.

Theorem

Let S be a monoid with finitely many left- and right ideals. Then S is residually finite if and only if all its Schützenberger groups are residually finite.
Let's introduce a really strong finiteness condition on the actions on S/R and S/L: finiteness itself.
Let’s introduce a really strong finiteness condition on the actions on S/\mathcal{R} and S/\mathcal{L}: finiteness itself.

😊 That certainly guarantees that the two actions will be residually finite. 😊
Let’s introduce a really strong finiteness condition on the actions on S/R and S/L: finiteness itself. 😊 That certainly guarantees that the two actions will be residually finite. 😊

Theorem

Let S be a monoid with finitely many left- and right ideals. Then S is residually finite if and only if all its Schützenberger groups are residually finite.
Summary (2)

<table>
<thead>
<tr>
<th>Properties of M</th>
<th>M r.f. \Rightarrow all $\Gamma(H)$ r.f.</th>
<th>M r.f. \Rightarrow M/\mathcal{L} r.f.</th>
<th>all $\Gamma(H)$ r.f. & $M/\mathcal{L}, M/\mathcal{R}$ r.f. $\Rightarrow M$ r.f.</th>
</tr>
</thead>
<tbody>
<tr>
<td>general</td>
<td>arbitrary</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td></td>
<td>regular</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>finite \mathcal{J}-type</td>
<td>arbitrary</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td></td>
<td>regular</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>$< \infty$ many left/right ideals</td>
<td>arbitrary</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td></td>
<td>regular</td>
<td>✓</td>
<td>✓</td>
</tr>
</tbody>
</table>
Properties of M

<table>
<thead>
<tr>
<th>Properties of M</th>
<th>M r.f. \Rightarrow all $\Gamma(H)$ r.f.</th>
<th>M r.f. \Rightarrow M/\mathcal{L} r.f.</th>
<th>all $\Gamma(H)$ r.f. & M/\mathcal{L}, M/\mathcal{R} r.f. \Rightarrow M r.f.</th>
</tr>
</thead>
<tbody>
<tr>
<td>general</td>
<td>arbitrary</td>
<td>✅</td>
<td>✗</td>
</tr>
<tr>
<td></td>
<td>regular</td>
<td>✅</td>
<td>✗</td>
</tr>
<tr>
<td>finite \mathcal{J}-type</td>
<td>arbitrary</td>
<td>✅</td>
<td></td>
</tr>
<tr>
<td></td>
<td>regular</td>
<td>✅</td>
<td>✅</td>
</tr>
<tr>
<td>$< \infty$ many left/right ideals</td>
<td>arbitrary</td>
<td>✅</td>
<td>✅</td>
</tr>
<tr>
<td></td>
<td>regular</td>
<td>✅</td>
<td>✅</td>
</tr>
</tbody>
</table>
Summary (2)

<table>
<thead>
<tr>
<th>Properties of M</th>
<th>M r.f. \Rightarrow all $\Gamma(H)$ r.f.</th>
<th>M r.f. \Rightarrow M/\mathcal{L} r.f.</th>
<th>all $\Gamma(H)$ r.f. & M/\mathcal{L}, M/\mathcal{R} r.f. \Rightarrow M r.f.</th>
</tr>
</thead>
<tbody>
<tr>
<td>general</td>
<td>arbitrary</td>
<td>✓</td>
<td>X</td>
</tr>
<tr>
<td></td>
<td>regular</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>finite \mathcal{J}-type</td>
<td>arbitrary</td>
<td>✓</td>
<td>X</td>
</tr>
<tr>
<td></td>
<td>regular</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>$< \infty$ many left/right ideals</td>
<td>arbitrary</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td></td>
<td>regular</td>
<td>✓</td>
<td>✓</td>
</tr>
</tbody>
</table>
Summary (2)

<table>
<thead>
<tr>
<th>Properties of M</th>
<th>M r.f. \Rightarrow all $\Gamma(H)$ r.f.</th>
<th>M r.f. \Rightarrow M/L r.f.</th>
<th>all $\Gamma(H)$ r.f. & $M/L, M/R$ r.f. \Rightarrow M r.f.</th>
</tr>
</thead>
<tbody>
<tr>
<td>general</td>
<td>arbitrary</td>
<td>✅</td>
<td>✗</td>
</tr>
<tr>
<td></td>
<td>regular</td>
<td>✅</td>
<td>✗</td>
</tr>
<tr>
<td>finite \mathcal{J}-type</td>
<td>arbitrary</td>
<td>✅</td>
<td>✗</td>
</tr>
<tr>
<td></td>
<td>regular</td>
<td>✅</td>
<td>✔</td>
</tr>
<tr>
<td>$< \infty$ many left/right ideals</td>
<td>arbitrary</td>
<td>✅</td>
<td>✔</td>
</tr>
<tr>
<td></td>
<td>regular</td>
<td>✅</td>
<td>✔</td>
</tr>
</tbody>
</table>
Properties of M

<table>
<thead>
<tr>
<th>Properties of M</th>
<th>M r.f. ⇒ all $\Gamma(H)$ r.f.</th>
<th>M r.f. ⇒ M/L r.f.</th>
<th>all $\Gamma(H)$ r.f. & $M/L, M/R$ r.f. ⇒ M r.f.</th>
</tr>
</thead>
<tbody>
<tr>
<td>general</td>
<td>arbitrary</td>
<td>✓</td>
<td>×</td>
</tr>
<tr>
<td></td>
<td>regular</td>
<td>✓</td>
<td>×</td>
</tr>
<tr>
<td>finite</td>
<td>arbitrary</td>
<td>✓</td>
<td>×</td>
</tr>
<tr>
<td>\mathcal{J}-type</td>
<td>regular</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td></td>
<td>regular</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>$< \infty$ many</td>
<td>arbitrary</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>left/right ideals</td>
<td>regular</td>
<td>✓</td>
<td>✓</td>
</tr>
</tbody>
</table>
A Possible New Project

Definition

A an algebraic structure A is residually free if for any $x, y \in A$ with $x \neq y$ there exists a homomorphism f from A into a free object F such that $f(x) \neq f(y)$.
A Possible New Project

Definition
A an algebraic structure A is residually free if for any $x, y \in A$ with $x \neq y$ there exists a homomorphism f from A into a free object F such that $f(x) \neq f(y)$.

Problem
Investigate residual freeness of semigroups and monoids. How does it depend on/affect residual freeness of its Schützenberger groups, and the actions on R- and L-classes?