Generating sets of Completely 0-Simple Semigroups

Robert Gray

University of St Andrews
Rank

Definition Let S be a semigroup and let T be a subset of S.

- The *rank* of S is the smallest number of elements needed in order to generate S:

 $$\text{rank}(S) = \min\{|A| : \langle A \rangle = S\}.$$

- The *relative rank* of S modulo T is the minimal number of elements of S that need to be added to T in order to generate the whole of S:

 $$\text{rank}(S : T) = \min\{|A| : A \subseteq S, \langle T \cup A \rangle = S\}.$$
Example: the structure of T_3

\[
\begin{array}{ccc}
\{3\}, \{1, 2\} & \{1, 2\} & \{2, 3\} & \{1, 3\} \\
\{1\}, \{2, 3\} & [1, 2, 2], [2, 1, 1] & [2, 3, 3], [3, 2, 2] & [1, 3, 3], [3, 1, 1] \\
\{2\}, \{1, 3\} & [1, 2, 1], [2, 1, 2] & [2, 3, 2], [3, 2, 3] & [1, 3, 1], [3, 1, 3] \\
\{1, 2, 3\} & & & [1, 1, 1], [2, 2, 2], [3, 3, 3] \\
\end{array}
\]
Definition Let J be some \mathcal{J} class of a semigroup S. Then the principal factor of S corresponding to J is the set $J^* = J \cup \{0\}$ with multiplication

$$s \ast t = \begin{cases} st & : \text{if } s, t, st \in J \\ 0 & : \text{otherwise.} \end{cases}$$

Definition A semigroup with zero is called 0-	extit{simple} if $\{0\}$ and S are its only ideals.

Theorem If J is a \mathcal{J} class of a semigroup S then J^* is either a 0-simple semigroup or else it is a zero semigroup.
Rees matrix semigroups

Definition

- \(G \) - a finite group.
Rees matrix semigroups

Definition

- G - a finite group.
- I, Λ be non-empty finite index sets.
Rees matrix semigroups

Definition

- G - a finite group.
- I, Λ be non-empty finite index sets.
- $P = (p_{\lambda_i})$ a regular $\Lambda \times I$ matrix over $G \cup \{0\}$.
Rees matrix semigroups

Definition

- G - a finite group.
- I, Λ be non-empty finite index sets.
- $P = (p_{\lambda i})$ a regular $\Lambda \times I$ matrix over $G \cup \{0\}$.
- $S = (I \times G \times \Lambda) \cup \{0\}$ with multiplication

$$(i, g, \lambda)(j, h, \mu) = \begin{cases}
(i, gp_{\lambda j}h, \mu) : & p_{\lambda j} \neq 0 \\
0 : & \text{otherwise}
\end{cases}$$

$$(i, g, \lambda)0 = 0(i, g, \lambda) = 00 = 0.$$
Theorem (The Rees Theorem) A semigroup S is completely 0-simple if and only if it is isomorphic to $\mathcal{M}^0[G; I, \Lambda; P]$ where G is a group and P is regular.
The BIG Problem

Problem Find a formula for the rank of an arbitrary completely 0-simple semigroup.

- What might we expect the value to depend on?
The BIG Problem

Problem Find a formula for the rank of an arbitrary completely 0-simple semigroup.

- What might we expect the value to depend on?
- $|I|$, $|\Lambda|$.
The BIG Problem

Problem Find a formula for the rank of an arbitrary completely 0-simple semigroup.

- What might we expect the value to depend on?
- $|I|, |\Lambda|$.
- $\text{rank}(G)$.
The BIG Problem

Problem Find a formula for the rank of an arbitrary completely 0-simple semigroup.

- $E(S)$ (‘contribution’ from the entries in the matrix).
The BIG Problem

Problem Find a formula for the rank of an arbitrary completely 0-simple semigroup.

- $E(S)$ (‘contribution’ from the entries in the matrix).
- Remember that $(i, p_{\lambda i}^{-1}, \lambda)$ are idempotent

\[
(i, p_{\lambda i}^{-1}, \lambda)(i, p_{\lambda i}^{-1}, \lambda) = (i, p_{\lambda i}^{-1}p_{\lambda i}p_{\lambda i}^{-1}, \lambda) = (i, p_{\lambda i}^{-1}, \lambda).
\]
Special Cases

We will break the problem up and consider the following special cases:

- Groups.
- Rectangular bands.
- Rectangular 0-bands - $\mathcal{M}^0[\{e\}; I, \Lambda; P]$.
- Simple semigroups.
- Connected 0-simple semigroups.
- Brandt semigroups ($P \sim I$).
Lemma Let G be a finite group, then

$$\text{rank}(\mathcal{M}^0[G; \{1\}, \{1\}; (1)]) = \text{rank}(G).$$
Rectangular bands

Definition $R_{mn} = \{1, \ldots, m\} \times \{1, \ldots, n\}$ with

$$(i, j)(k, l) = (i, l).$$

Proposition

rank(R_{mn}) = max{m, n}.

Proof
Rectangular 0-bands

Definition Let $I = \{1, 2, \ldots, m\}$ and $\Lambda = \{1, 2, \ldots, n\}$ be finite sets and let P be a regular $n \times m$ matrix of 0s and 1s. A rectangular 0-band is a semigroup $S = ZB_{mn} = (I \times \lambda) \cup \{0\}$ whose multiplication is given by

$$(i, \lambda)(j, \mu) = \begin{cases} (i, \mu) & : \text{if } p_{\lambda j} = 1 \\ 0 & : \text{if } p_{\lambda j} = 0 \end{cases}$$

$$(i, \lambda)0 = 0(i, \lambda) = 00 = 0.$$
Rectangular 0-bands

Figure 1:

\[P = \begin{pmatrix} 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 \\ 0 & 0 & 1 & 1 \\ 1 & 1 & 0 & 0 \end{pmatrix} \]

\[A = \{(1, 1), (2, 3), (3, 4), (4, 2)\} \]
Rectangular 0-bands

Figure 1:

\[P = \begin{pmatrix}
0 & 1 & 0 & 1 \\
1 & 0 & 1 & 0 \\
0 & 0 & 1 & 1 \\
1 & 1 & 0 & 0
\end{pmatrix} \]

\[A = \{(1, 1), (2, 3), (3, 4), (4, 2)\} \]
Rectangular 0-bands

Figure 1:

\[A = \{(1, 1), (2, 3), (3, 4), (4, 2)\} \]

\[P = \begin{pmatrix} 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 \\ 0 & 0 & 1 & 1 \\ 1 & 1 & 0 & 0 \end{pmatrix} \]
Rectangular 0-bands

Figure 1:

\[
P = \begin{pmatrix}
0 & 1 & 0 & 1 \\
1 & 0 & 1 & 0 \\
0 & 0 & 1 & 1 \\
1 & 1 & 0 & 0
\end{pmatrix}
\]

\[
A = \{(1, 1), (2, 3), (3, 4), (4, 2)\}
\]

(1, 1)
Rectangular 0-bands

Figure 1:

\[P = \begin{pmatrix} 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 \\ 0 & 0 & 1 & 1 \\ 1 & 1 & 0 & 0 \end{pmatrix} \]

\[A = \{(1,1), (2,3), (3,4), (4,2)\} \]

\[(1,1)(2,3)\]
Rectangular 0-bands

Figure 1:

\[P = \begin{pmatrix} 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 \\ 0 & 0 & 1 & 1 \\ 1 & 1 & 0 & 0 \end{pmatrix} \]

\[A = \{(1, 1), (2, 3), (3, 4), (4, 2)\} \]

\[(1, 1)(2, 3) \]

\[p_{12} = 1 \]
Rectangular 0-bands

Figure 1:

$P = \begin{pmatrix}
0 & 1 & 0 & 1 \\
1 & 0 & 1 & 0 \\
0 & 0 & 1 & 1 \\
1 & 1 & 0 & 0
\end{pmatrix}$

$A = \{(1, 1), (2, 3), (3, 4), (4, 2)\}$

$(1, 1)(2, 3) =$

$p_{12} = 1$
Rectangular 0-bands

Figure 1:

\[P = \begin{pmatrix} 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 \\ 0 & 0 & 1 & 1 \\ 1 & 1 & 0 & 0 \end{pmatrix} \]

\[A = \{(1, 1), (2, 3), (3, 4), (4, 2)\} \]

\[(1, 1)(2, 3) = (1, 3) \]

\[p_{12} = 1 \]
Rectangular 0-bands

Figure 1:

\[P = \begin{pmatrix}
 0 & 1 & 0 & 1 \\
 1 & 0 & 1 & 0 \\
 0 & 0 & 1 & 1 \\
 1 & 1 & 0 & 0
\end{pmatrix} \]

\[A = \{(1, 1), (2, 3), (3, 4), (4, 2)\} \]

\[(1, 1)(2, 3) = (1, 3) \]

\[p_{12} = 1 \]
Rectangular 0-bands

Figure 1:

\[P = \begin{pmatrix} 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 \\ 0 & 0 & 1 & 1 \\ 1 & 1 & 0 & 0 \end{pmatrix} \]

\[A = \{(1, 1), (2, 3), (3, 4), (4, 2)\} \]

\[(1, 1)(2, 3) = (1, 3) \]

\[p_{12} = 1 \]
Rectangular 0-bands

Figure 2:

\[P = \begin{pmatrix} 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 \\ 0 & 0 & 1 & 1 \\ 1 & 1 & 0 & 0 \end{pmatrix} \]

\[A = \{(1, 1), (2, 3), (3, 4), (4, 2)\} \]
Rectangular 0-bands

Figure 2:

\[P = \begin{pmatrix} 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 \\ 0 & 0 & 1 & 1 \\ 1 & 1 & 0 & 0 \end{pmatrix} \]

\[A = \{(1, 1), (2, 3), (3, 4), (4, 2)\} \]
Rectangular 0-bands

Figure 2:

\[P = \begin{pmatrix} 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 \\ 0 & 0 & 1 & 1 \\ 1 & 1 & 0 & 0 \end{pmatrix} \]

\[A = \{ (1, 1), (2, 3), (3, 4), (4, 2) \} \]
Rectangular 0-bands

Figure 2:

\[P = \begin{pmatrix}
0 & 1 & 0 & 1 \\
1 & 0 & 1 & 0 \\
0 & 0 & 1 & 1 \\
1 & 1 & 0 & 0
\end{pmatrix} \]

\[A = \{(1, 1), (2, 3), (3, 4), (4, 2)\} \]

(2, 3)
Rectangular 0-bands

Figure 2:

\[P = \begin{pmatrix}
0 & 1 & 0 & 1 \\
1 & 0 & 1 & 0 \\
0 & 0 & 1 & 1 \\
1 & 1 & 0 & 0 \\
\end{pmatrix} \]

\[A = \{(1, 1), (2, 3), (3, 4), (4, 2)\} \]

(2, 3)(1, 1)
Rectangular 0-bands

Figure 2:

$$P = \begin{pmatrix} 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 \\ 0 & 0 & 1 & 1 \\ 1 & 1 & 0 & 0 \end{pmatrix}$$

$$A = \{(1, 1), (2, 3), (3, 4), (4, 2)\}$$

$$\underline{(2, 3)(1, 1)}$$

$$p_{31} = 0$$
Rectangular 0-bands

Figure 2:

\[P = \begin{pmatrix} 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 \\ 0 & 0 & 1 & 1 \\ 1 & 1 & 0 & 0 \end{pmatrix} \]

\[A = \{(1, 1), (2, 3), (3, 4), (4, 2)\} \]

\[(2, 3)(1, 1) = 0 \]

\[p_{31} = 0 \]
Rectangular 0-bands

Figure 2:

\[
P = \begin{pmatrix}
0 & 1 & 0 & 1 \\
1 & 0 & 1 & 0 \\
0 & 0 & 1 & 1 \\
1 & 1 & 0 & 0
\end{pmatrix}
\]

\[
A = \{(1,1), (2,3), (3,4), (4,2)\}
\]

\[
(2,3)(1,1) = 0
\]

\[
p_{31} = 0
\]
Theorem Let $S = ZB_{mn}$, be an $m \times n$ rectangular 0-band, then

$$\text{rank}(S) = \max\{m, n\}.$$
Corollary If $S = \mathcal{M}^0[G; I, \Lambda; P]$ is idempotent generated then

\[
\operatorname{rank}(S) = \max(|I|, |\Lambda|).
\]
Corollary If \(S = \mathcal{M}^0[G; I, \Lambda; P] \) is idempotent generated then
\[
\text{rank}(S) = \max(|I|, |\Lambda|).
\]

Corollary With
\[
K(n, r) = \{\alpha \in T_n : |\text{im}(\alpha)| \leq r\}, (2 \leq r \leq n - 1)
\]
we have
\[
\text{rank}(K(n, r)) = \max\left(\binom{n}{r}, S(n, r)\right) = S(n, r).
\]
Theorem (NR, 1994) Let $S = M[G; I, \Lambda; P]$ be a finite Rees matrix semigroup with P in normal form. Then

$$\text{rank}(S) = \max(|I|, |\Lambda|, \text{rank}(G : H))$$

where $H = \langle P \rangle$.

Normal form

$$P = \begin{pmatrix}
1 & 1 & 1 & \ldots & 1 \\
1 & g_{22} & g_{23} & \ldots & g_{2n} \\
1 & g_{32} & g_{33} & \ldots & g_{3n} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
1 & g_{n2} & g_{n3} & \ldots & g_{nn}
\end{pmatrix}$$
Definition Let $S = M^0[G; I, \Lambda; P]$, then we let $\Gamma(S)$ be the graph with set of vertices
\[\{(i, \lambda) \in I \times \Lambda : H_{i,\lambda} \text{ is a group}\} \] and (i, λ) adjacent to (j, μ) if and only if $i = j$ or $\lambda = \mu$.

Definition We say $S = M^0[G; I, \Lambda; P]$ is connected if $\Gamma(S)$ is connected.

Example Connected.
Definition Let $S = M^0[G; I, \Lambda; P]$, then we let $\Gamma(S')$ be the graph with set of vertices
$$\{(i, \lambda) \in I \times \Lambda : H_{i,\lambda} \text{ is a group}\}$$
and (i, λ) adjacent to (j, μ) if and only if $i = j$ or $\lambda = \mu$.

Definition We say $S = M^0[G; I, \Lambda; P]$ is connected if $\Gamma(S')$ is connected.

Example Connected.
Connected completely 0-simple semigroups

Definition Let $S = \mathcal{M}^0[G; I, \Lambda; P]$, then we let $\Gamma(S')$ be the graph with set of vertices
\[\{(i, \lambda) \in I \times \Lambda : H_{i\lambda} \text{ is a group}\} \] and (i, λ) adjacent to (j, μ) if and only if $i = j$ or $\lambda = \mu$.

Definition We say $S = \mathcal{M}^0[G; I, \Lambda; P]$ is connected if $\Gamma(S')$ is connected.

Example Connected.
Connected completely 0-simple semigroups

Definition Let \(S = \mathcal{M}^0[G; I, \Lambda; P] \), then we let \(\Gamma(S) \) be the graph with set of vertices
\(\{(i, \lambda) \in I \times \Lambda : H_{i\lambda} \text{ is a group}\} \) and \((i, \lambda)\) adjacent to
\((j, \mu)\) if and only if \(i = j \) or \(\lambda = \mu \).

Definition We say \(S = \mathcal{M}^0[G; I, \Lambda; P] \) is connected if
\(\Gamma(S) \) is connected.

Example Connected.
In particular \(S = \mathcal{M}[G; I, \Lambda; P] \) (simple semigroups) are all connected.
Connected completely 0-simple semigroups

Definition Let $S = \mathcal{M}^0[G; I, \Lambda; P]$, then we let $\Gamma(S')$ be the graph with set of vertices

$\{(i, \lambda) \in I \times \Lambda : H_{i\lambda}$ is a group$\}$ and (i, λ) adjacent to (j, μ) if and only if $i = j$ or $\lambda = \mu$.

Definition We say $S = \mathcal{M}^0[G; I, \Lambda; P]$ is connected if $\Gamma(S')$ is connected.

ExampleDisconnected.
Definition Let $S = M^0[G; I, \Lambda; P]$, then we let $\Gamma(S')$ be the graph with set of vertices
$\{ (i, \lambda) \in I \times \Lambda : H_{i\lambda} \text{ is a group} \}$ and (i, λ) adjacent to (j, μ) if and only if $i = j$ or $\lambda = \mu$.

Definition We say $S = M^0[G; I, \Lambda; P]$ is connected if $\Gamma(S')$ is connected.

Example Disconnected.
Connected completely 0-simple semigroups

Definition Let \(S = \mathcal{M}^0[G; I, \Lambda; P] \), then we let \(\Gamma(S') \) be the graph with set of vertices \(\{(i, \lambda) \in I \times \Lambda : H_{i\lambda} \text{ is a group}\} \) and \((i, \lambda)\) adjacent to \((j, \mu)\) if and only if \(i = j \) or \(\lambda = \mu \).

Definition We say \(S = \mathcal{M}^0[G; I, \Lambda; P] \) is connected if \(\Gamma(S') \) is connected.

ExampleDisconnected.
Theorem (NR, 1994) Let $S = M^0[G; I, \Lambda; P]$ be a finite connected Rees matrix semigroup with regular matrix P (in normal form). Then

$$\text{rank}(S) = \max(|I|, |\Lambda|, \text{rank}(G : H))$$

where H is the subgroup of G generated by the non-zero entries in P.
Theorem (Howie, Gomes, 1986) Let
\(B = B(G, \{1, \ldots, n\}) \) be a Brandt semigroup, where \(G \) is a finite group of rank \(r \). Then the rank of \(B \) (as an inverse semigroup) is \(r + n - 1 \).
Theorem (Howie, Gomes, 1986) Let $B = B(G, \{1, \ldots, n\})$ be a Brandt semigroup, where G is a finite group of rank r. Then the rank of B (as an inverse semigroup) is $r + n - 1$.

Proof (\leq)

$A = \{(1, g_1, 1), \ldots, (1, g_r, 1), (1, e, 2), (2, e, 3), \ldots, (n - 1, e, n)\}$

(\geq) Using graph theory.
What do we know?

<table>
<thead>
<tr>
<th></th>
<th>$G = {e}$</th>
<th>G arbitrary</th>
</tr>
</thead>
<tbody>
<tr>
<td>Connected</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Disconnected</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Brandt</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
What do we know?

<table>
<thead>
<tr>
<th></th>
<th>$G = {e}$</th>
<th>G arbitrary</th>
</tr>
</thead>
<tbody>
<tr>
<td>Connected</td>
<td></td>
<td>$\max(</td>
</tr>
<tr>
<td>Disconnected</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Brandt</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
What do we know?

<table>
<thead>
<tr>
<th></th>
<th>$G = {e}$</th>
<th>G arbitrary</th>
</tr>
</thead>
<tbody>
<tr>
<td>Connected</td>
<td>$\max(</td>
<td>I</td>
</tr>
<tr>
<td>Disconnected</td>
<td></td>
<td>$\max(n, n, r + n - 1)$</td>
</tr>
<tr>
<td>Brandt</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
What do we know?

<table>
<thead>
<tr>
<th></th>
<th>$G = {e}$</th>
<th>G arbitrary</th>
</tr>
</thead>
<tbody>
<tr>
<td>Connected</td>
<td>$\max(</td>
<td>I</td>
</tr>
<tr>
<td>Disconnected</td>
<td>$\max(n, n)$</td>
<td>$\max(n, n, r + n - 1)$</td>
</tr>
</tbody>
</table>

Brandt

$\max(n, n)$

max($n, n, r + n - 1$)
What do we know?

<table>
<thead>
<tr>
<th></th>
<th>$G = {e}$</th>
<th>G arbitrary</th>
</tr>
</thead>
<tbody>
<tr>
<td>Connected</td>
<td>$\max(</td>
<td>I</td>
</tr>
<tr>
<td>Disconnected</td>
<td>$\max(</td>
<td>I</td>
</tr>
<tr>
<td>Brandt</td>
<td>$\max(n, n)$</td>
<td>$\max(n, n, r + n - 1)$</td>
</tr>
</tbody>
</table>
What do we know?

<table>
<thead>
<tr>
<th></th>
<th>$G = {e}$</th>
<th>G arbitrary</th>
</tr>
</thead>
<tbody>
<tr>
<td>Connected</td>
<td>$\max(</td>
<td>I</td>
</tr>
<tr>
<td>Disconnected</td>
<td>$\max(</td>
<td>I</td>
</tr>
<tr>
<td>Brandt</td>
<td>$\max(n, n)$</td>
<td>$\max(n, n, r + n - 1)$</td>
</tr>
</tbody>
</table>
Theorem Let $S = M^0[G; I, \Lambda; P]$ be a finite Rees matrix semigroup with regular matrix P (in normal form) with connected components C_1, \ldots, C_k and H_j the subgroup of G generated by all non-zero entries of C_j, for $j = 1, \ldots, k$. Then

$$\text{rank}(S) = \max(|I|, |\Lambda|, r_{\min} + k - 1)$$

where

$$r_{\min} = \min_{(g_1, \ldots, g_k) \in G \times \ldots \times G} \left(\text{rank}(G : \bigcup_{j=1}^k g_j^{-1} H_j g_j) \right) .$$