Connected-homogeneous graphs

Robert Gray

UNIVERSITY OF LEEDS

BIRS Workshop on Infinite Graphs
October 2007
Homogeneous graphs

Definition
A graph Γ is called homogeneous if any isomorphism between finite induced subgraphs extends to an automorphism of the graph.

Homogeneity is the strongest possible symmetry condition we can impose on a graph.

Example
The line graph $L(K_{3,3})$ of the complete bipartite graph $K_{3,3}$ is a finite homogeneous graph.
Classification of finite homogeneous graphs

Gardiner classified the finite homogeneous graphs.

Theorem (Gardiner (1976))

A finite graph is homogeneous if and only if it is isomorphic to one of the following:

1. finitely many disjoint copies of a complete graph K_r (or its complement, complete multipartite graph)
2. the pentagon C_5
3. line graph $L(K_{3,3})$ of the complete bipartite graph $K_{3,3}$.
An infinite homogeneous graph

Definition (The random graph \(R \))

Constructed by Rado in 1964. The vertex set is the natural numbers (including zero).

For \(i, j \in \mathbb{N}, i < j \), then \(i \) and \(j \) are joined if and only if the \(i \)th digit in \(j \) (in base 2, reading right-to-left) is 1.

Example

Since \(88 = 8 + 16 + 64 = 2^3 + 2^4 + 2^6 \) the numbers less that 88 that are adjacent to 88 are just \(\{3, 4, 6\} \).

Of course, many numbers greater than 88 will also be adjacent to 88 (for example \(2^{88} \)).
The random graph

Consider the following property of graphs:

(*) For any two finite disjoint sets U and V of vertices, there exists a vertex w adjacent to every vertex in U and to no vertex in V.
The random graph

Consider the following property of graphs:

(*) For any two finite disjoint sets U and V of vertices, there exists a vertex w adjacent to every vertex in U and to no vertex in V.

Theorem

There exists a countably infinite graph R satisfying property (*), and it is unique up to isomorphism. The graph R is homogeneous.

Existence. The random graph R defined above satisfies property (*).
The random graph

Consider the following property of graphs:

(*) For any two finite disjoint sets U and V of vertices, there exists a vertex w adjacent to every vertex in U and to no vertex in V.

Theorem
There exists a countably infinite graph R satisfying property (*), and it is unique up to isomorphism. The graph R is homogeneous.

Existence. The random graph R defined above satisfies property (*).

Uniqueness and homogeneity. Both follow from a back-and-forth argument. Property (*) is used to extend the domain (or range) of any isomorphism between finite substructures one vertex at a time.
Building homogeneous graphs: Fraïssé’s theorem

- The **age** of a graph Γ is the class of isomorphism types of its finite induced subgraphs.

- e.g. the age of the random graph R is the class of *all* finite graphs.
Building homogeneous graphs: Fraïssé’s theorem

- The **age** of a graph Γ is the class of isomorphism types of its finite induced subgraphs.

- e.g. the age of the random graph R is the class of *all* finite graphs.

Fraïssé (1953) - gives necessary and sufficient conditions for a class C of finite graphs to be the age of a countably infinite homogeneous graph M. The key condition is the **amalgamation property**.

If Fraïssé’s conditions hold, then M is unique, C is called a **Fraïssé class**, and M is called the **Fraïssé limit** of the class C.
Countable homogeneous graphs

Examples

- The class of all finite graphs is a Fraïssé class. Its Fraïssé limit is the random graph R.
- The class of all finite graphs not embedding K_n (for some fixed n) is a Fraïssé class. We call the Fraïssé limit the countable generic K_n-free graph.

Theorem (Lachlan and Woodrow (1980))

Let Γ be a countably infinite homogeneous graph. Then Γ is isomorphic to one of: the random graph, a disjoint union of complete graphs (or its complement), the generic K_n-free graph (or its complement).
Connected-homogeneous graphs

Definition
A graph Γ is **connected-homogeneous** if any isomorphism between connected finite induced subgraphs extends to an automorphism.

Example
The hexagon C_6 is connected-homogeneous

Use rotations and reflections
Connected-homogeneous graphs

Definition
A graph Γ is **connected-homogeneous** if any isomorphism between connected finite induced subgraphs extends to an automorphism.

Example

The hexagon C_6 is connected-homogeneous

Use rotations and reflections
Connected-homogeneous graphs

Definition
A graph Γ is connected-homogeneous if any isomorphism between connected finite induced subgraphs extends to an automorphism.

Example

The hexagon C_6 is connected-homogeneous

Use rotations and reflections
Connected-homogeneous graphs

Definition
A graph Γ is connected-homogeneous if any isomorphism between connected finite induced subgraphs extends to an automorphism.

Example

On the other hand the hexagon is not homogeneous.

There is no automorphism α such that $(u, v)^\alpha = (u, w)$.
Connected-homogeneous graphs

Connected-homogeneity...

1. is a natural weakening of homogeneity;
2. gives a class of graphs that lie between the (already classified) homogeneous graphs and the (not yet classified) distance-transitive graphs.

\[\text{homogeneous} \Rightarrow \text{connected-homogeneous} \Rightarrow \text{distance-transitive} \]

(A graph is **distance-transitive** if for any two pairs \((u, v)\) and \((u', v')\) with \(d(u, v) = d(u', v')\), where \(d\) denotes distance in the graph, there is an automorphism taking \(u\) to \(u'\) and \(v\) to \(v'\).)
Finite connected-homogeneous graphs

Gardiner classified the finite connected-homogeneous graphs.

Theorem (Gardiner (1978))

A finite graph is connected-homogeneous if and only if it is isomorphic to a disjoint union of copies of one of the following:

1. a finite homogeneous graph

2. bipartite “complement of a perfect matching”
 (obtained by removing a perfect matching from a complete bipartite graph $K_{s,s}$)

3. cycle C_n

4. the line graph $L(K_{s,s})$ of a complete bipartite graph $K_{s,s}$

5. Petersen’s graph

6. the graph obtained by identifying antipodal vertices of the 5-dimensional cube Q_5
Tree-like examples

Definition (Tree)
A **tree** is a connected graph without cycles. A tree is **regular** if all vertices have the same degree. We use T_r to denote a regular tree of valency r.

Fact. A regular tree T_r ($r \in \mathbb{N}$) is an example of an infinite locally-finite connected-homogeneous graph.

Definition (Semiregular tree)
$T_{a,b}$: A tree $T = X \cup Y$ where $X \cup Y$ is a bipartition, all vertices in X have degree a, and all in Y have degree b.
Locally finite infinite connected-homogeneous graphs

Let \(r, l \in \mathbb{N} (l \geq 2) \)

Take the bipartite semiregular tree \(T_{r+1,l} \).

The graph \(X_{r,l} \) is given by:

Vertices = bipartite block of \(T_{r+1,l} \) of vertices of degree \(l \).

Edges = adjacent in \(X_{r,l} \) if their distance in the tree is 2.

(Macpherson (1982) proved that every connected infinite locally-finite distance transitive graph has this form)
Locally finite infinite connected-homogeneous graphs

Let \(r, l \in \mathbb{N} (l \geq 2) \)

Take the bipartite semiregular tree \(T_{r+1,l} \).

The graph \(X_{r,l} \) is given by:

Vertices = bipartite block of \(T_{r+1,l} \) of vertices of degree \(l \).

Edges = adjacent in \(X_{r,l} \) if their distance in the tree is 2.

(Macpherson (1982) proved that every connected infinite locally-finite distance transitive graph has this form)
Locally finite infinite connected-homogeneous graphs

Let \(r, l \in \mathbb{N} (l \geq 2) \)

Take the bipartite semiregular tree \(T_{r+1,l} \).

The graph \(X_{r,l} \) is given by:

Vertices = bipartite block of \(T_{r+1,l} \) of vertices of degree \(l \).

Edges = adjacent in \(X_{r,l} \) if their distance in the tree is 2.

(Macpherson (1982) proved that every connected infinite locally-finite distance transitive graph has this form)
Infinite connected-homogeneous graphs

Theorem (RG, Macpherson (2007))

A countable graph is connected-homogeneous if and only if it is isomorphic to the disjoint union of a finite or countable number of copies of one of the following:

1. a finite connected-homogeneous graph;
2. a homogeneous graph;
3. the random bipartite graph;
4. bipartite infinite complement of a perfect matching;
5. the line graph of the infinite complete bipartite graph K_{\aleph_0,\aleph_0};
6. a treelike graph X_{κ_1,κ_2} with $\kappa_1, \kappa_2 \in (\mathbb{N} \setminus \{0\}) \cup \{\aleph_0\}$.
Future work

Digraphs

- There are 2^\aleph_0 such graphs.

Problem 1. Classify the countably infinite connected-homogeneous digraphs.

Problem 2. Classify the locally-finite countably infinite connected-homogeneous digraphs.

Recent progress (with R. Möller).

In the case that the graph has more than one end we have:

1. a classification when the underlying graph embeds a triangle
2. underlying graph triangle-free \Rightarrow digraph is highly-arc-transitive
 - can describe the descendants and the reachability graphs