Graphs with a high degree of symmetry

Robert Gray

University of Leeds

June 14th 2007
Outline

Introduction
 Graphs, automorphisms, and vertex-transitivity

Two notions of symmetry
 Distance-transitive graphs
 Homogeneous graphs

An intermediate notion
 Connected-homogeneous graphs
Introduction

Graphs, automorphisms, and vertex-transitivity

Two notions of symmetry
 Distance-transitive graphs
 Homogeneous graphs

An intermediate notion
 Connected-homogeneous graphs
Graphs and automorphisms

Definition

- A graph \(\Gamma \) is a pair \((V \Gamma, E \Gamma)\)
 - \(V \Gamma \) - vertex set
 - \(E \Gamma \) - set of 2-element subsets of \(V \Gamma \), the edge set.
- If \(\{u, v\} \in E \Gamma \) we say that \(u \) and \(v \) are adjacent writing \(u \sim v \).
- The neighbourhood of \(u \) is \(\Gamma(u) = \{v \in V \Gamma : v \sim u\} \), and the degree (or valency) of \(u \) is \(|\Gamma(u)|\).
- A graph \(\Gamma \) is finite if \(V \Gamma \) is finite, and is locally-finite if all of its vertices have finite degree.
- An automorphism of \(\Gamma \) is a bijection \(\alpha : V \Gamma \to V \Gamma \) sending edges to edges and non-edges to non-edges. We write \(G = \operatorname{Aut} \Gamma \) for the full automorphism group of \(\Gamma \).
Graphs with symmetry

Roughly speaking, the ‘more’ symmetry a graph has the ‘larger’ its automorphism group will be (and vice versa).

Aim. To obtain classifications of families of graphs with a high degree of symmetry.

In each case we impose a symmetry condition \mathcal{P} and then attempt to describe all (countable) graphs with property \mathcal{P}.

For each class, this naturally divides into three cases:
- finite graphs;
- infinite locally-finite graphs;
- infinite non-locally-finite graphs.
Vertex-transitive graphs

Definition
Γ is vertex transitive if G acts transitively on $V\Gamma$. That is, for all $u, v \in V\Gamma$ there is an automorphism $\alpha \in G$ such that $u^\alpha = v$.

This is the weakest possible condition and there are many examples.

Complete graph K_r has r vertices and every pair of vertices is joined by an edge.

Cycle C_r has vertex set $\{1, \ldots, r\}$ and edge set $\{\{1, 2\}, \{2, 3\}, \ldots, \{r, 1\}\}$.

Empty graph I_r is the complement of the complete graph K_r. (The complement Γ of Γ is defined by $V\Gamma = V\Gamma$, $E\Gamma = \{\{i, j\} : \{i, j\} \not\in E\Gamma\}$).
Some vertex transitive bipartite graphs

Definition
A graph is called bipartite if the vertex set may be partitioned into two disjoint sets X and Y such that no two vertices in X are adjacent, and no two vertices of Y are adjacent.

- **Complete bipartite** every vertex in X is adjacent to every vertex of Y (written $K_{a,b}$ if $|X| = a$, $|Y| = b$).

- **Perfect matching** there is a bijection $\pi : X \rightarrow Y$ such that $E_\Gamma = \{\{x, \pi(x)\} : x \in X\}$

- **Complement of perfect matching** $\{x, y\} \in E_\Gamma \iff y \neq \pi(x)$
Cayley graphs of groups

Definition
G - group, $A \subseteq G$ a generating set for G such that $1_G \not\in A$ and A is closed under taking inverses (so $x \in A \Rightarrow x^{-1} \in A$).

The (right) Cayley graph $\Gamma = \Gamma(G, A)$ is given by

$$V\Gamma = G; \quad E\Gamma = \{\{g, h\} : g^{-1}h \in A\}.$$

Thus two vertices are adjacent if they differ in G by right multiplication by a generator.

Fact. The Cayley graph of a group is always vertex transitive.
Example (Cayley graph of S_3)

$G =$ the symmetric group S_3, \(A = \{ (1 2), (2 3), (1 3) \} \)

$\Gamma(G, A) \cong K_{3,3}$ a complete bipartite graph.
Vertex-transitive graphs

On the other hand, not every vertex transitive graph arises in this way.

Example (Petersen graph)
The Petersen graph is vertex transitive but is not a Cayley graph.

There are ‘far too many’ vertex transitive graphs for us to stand a chance of achieving a classification.
Outline

Introduction
 Graphs, automorphisms, and vertex-transitivity

Two notions of symmetry
 Distance-transitive graphs
 Homogeneous graphs

An intermediate notion
 Connected-homogeneous graphs
Distance-transitive graphs

Definition
In a connected graph Γ we define the distance $d(u, v)$ between u and v to be the length of a shortest path from u to v.

Definition
A graph is distance-transitive if for any two pairs (u, v) and (u', v') with $d(u, v) = d(u', v')$, there is an automorphism taking u to u' and v to v'.

distance-transitive \Rightarrow vertex-transitive

Example
A connected finite distance-transitive graph of valency 2 is simply a cycle C_n.
Definition
The **Hamming graph** $H(d, n)$. Let $\mathbb{Z}_n = \{0, 1, 2, \ldots, n - 1\}$. Then the vertex set of $H(d, n)$ is

$$
\mathbb{Z}_n^d = \mathbb{Z}_n \times \cdots \times \mathbb{Z}_n
$$
d times

and two vertices u and v are adjacent if and only if they differ in exactly one coordinate.

The d-dimensional **hypercube** is defined to be $Q_d := H(d, 2)$. Its vertices are d-dimensional vectors over $\mathbb{Z}_2 = \{0, 1\}$.

Fact. $H(d, n)$ is distance transitive
Hypercubes $Q_i \ (i = 2, 3, 4)$
Finite distance-transitive graphs

The classification of the finite distance-transitive graphs is still incomplete, but a lot of progress has been made.

Definition
A graph is **imprimitive** if there is an equivalence relation on its vertex set which is preserved by all automorphisms.
Imprimitive distance-transitive graphs

The cube is imprimitive in two different ways.

1. **Bipartite** The bipartition relation

 \[u \equiv v \iff d(u, v) \text{ is even} \]

 is preserved (2 equivalence classes: red and blue)

2. **Antipodal** The relation

 \[u \approx v \iff u = v \text{ or } d(u, v) = 3 \]

 is preserved (4 equivalence classes: black, blue, purple and red)
Smith’s reduction

Smith (1971) showed that the *only* way in which a finite distance-transitive graph (of valency > 2) can be imprimitive is as a result of being bipartite or antipodal (as in the cube example above).

This reduces the classification of finite distance-transitive graphs to:

1. classify the finite primitive distance-transitive graphs (this is close to being complete, using the classification of finite simple groups; see recent survey by John van Bon in *European J. Combin.*);

2. find all ‘bipartite doubles’ and ‘antipodal covers’ of these graphs (still far from complete).
Infinite locally-finite distance-transitive graphs

Trees

Definition (Tree)
A **tree** is a connected graph without cycles. A tree is **regular** if all vertices have the same degree. We use T_r to denote a regular tree of valency r.

Fact. A regular tree T_r ($r \in \mathbb{N}$) is an example of an infinite locally-finite distance-transitive graph.

Definition (Semiregular tree)
$T_{a,b}$: A tree $T = X \cup Y$ where $X \cup Y$ is a bipartition, all vertices in X have degree a, and all in Y have degree b.

A semiregular tree will not in general be distance transitive.
Locally finite infinite distance-transitive graphs
A family of examples

- Let $r \geq 1$ and $l \geq 2$ be integers.
- Take a bipartite semiregular tree $T_{r+1,l}$
 - one block A with vertices of degree $r + 1$
 - the other B with vertices of degree l
- Define $X_{r,l}$
 - Vertex set = B
 - $b_1, b_2 \in B$ joined iff they are at distance 2 in $T_{r+1,l}$.

$T_{3,4}$
Locally finite infinite distance-transitive graphs
A family of examples

Example $X_{r,l} = X_{2,4}$.

- Let $r = 2$ and $l = 4$.
- So $T_{r+1,l} = T_{3,4}$
 - $A = \text{vertices of degree 3 (in black)}$
 - $B = \text{vertices of degree 4 (in red)}$
- $X_{2,4}$
 - Vertex set $= B = \text{red vertices}$
 - $b_1, b_2 \in B$ joined iff they are at distance 2 in $T_{3,4}$.

$T_{3,4}$
Locally finite infinite distance-transitive graphs
A family of examples

Example $X_{r,l} = X_{2,4}$.

- Let $r = 2$ and $l = 4$.
- So $T_{r+1,l} = T_{3,4}$
 - $A =$ vertices of degree 3 (in black)
 - $B =$ vertices of degree 4 (in red)
- $X_{2,4}$
 - Vertex set $= B =$ red vertices
 - $b_1, b_2 \in B$ joined iff they are at distance 2 in $T_{3,4}$.
Example $X_{r,l} = X_{2,4}$.

- Let $r = 2$ and $l = 4$.
- So $T_{r+1,l} = T_{3,4}$
 - $A =$ vertices of degree 3 (in black)
 - $B =$ vertices of degree 4 (in red)
- $X_{2,4}$
 - Vertex set $= B =$ red vertices
 - $b_1, b_2 \in B$ joined iff they are at distance 2 in $T_{3,4}$.
Macpherson’s theorem

The graphs X_{κ_1,κ_2} ($\kappa_1, \kappa_2 \in (\mathbb{N} \setminus \{0\}) \cup \{\aleph_0\}$) are distance transitive.

The neighbourhood of a vertex consists of κ_2 copies of the complete graph K_{κ_1}.

Theorem (Macpherson (1982))

A locally-finite infinite graph is distance transitive if and only if it is isomorphic to $X_{k,r}$ for some $k, r \in \mathbb{N}$.

The key steps in Macpherson’s proof are to take an infinite locally finite distance-transitive graph Γ and

1. prove that Γ is “tree-like” (i.e. show Γ has infinitely many ends)
2. apply a powerful theorem of Dunwoody (1982) about graphs with more than one end
Non-locally-finite infinite distance-transitive graphs

On the other hand, for infinite non-locally-finite distance-transitive graphs far less is known.

The following result is due to Evans.

Theorem

There exist 2^{\aleph_0} non-isomorphic countable distance-transitive graphs.

Proof. Makes use of a construction originally due to Hrushovski (which is itself a powerful strengthening of Fraïssé’s method for constructing countable structures by amalgamation).
Outline

Introduction
 Graphs, automorphisms, and vertex-transitivity

Two notions of symmetry
 Distance-transitive graphs
 Homogeneous graphs

An intermediate notion
 Connected-homogeneous graphs
Homogeneous graphs

Definition
A graph Γ is called homogeneous if any isomorphism between finite induced subgraphs extends to an automorphism of the graph.

Homogeneity is the strongest possible symmetry condition we can impose.

$\text{homogeneous} \Rightarrow \text{distance-transitive} \Rightarrow \text{vertex-transitive}$
A finite homogeneous graph

Definition (Line graph)
The line graph $L(\Gamma)$ of a graph Γ has vertex set the edge set of Γ, and two vertices e_1 and e_2 joined in $L(\Gamma)$ iff the edges e_1, e_2 share a common vertex in Γ.

Example
$L(K_{3,3})$ is a finite homogeneous graph
Classification of finite homogeneous graphs

Gardiner classified the finite homogeneous graphs.

Theorem (Gardiner (1976))

A finite graph is homogeneous if and only if it is isomorphic to one of the following:

1. finitely many disjoint copies of K_r ($r \geq 1$) (or its complement);
2. The pentagon C_5;
3. Line graph $L(K_{3,3})$ of the complete bipartite graph $K_{3,3}$.
Infinite homogeneous graphs

Definition (The random graph R)
Constructed by Rado in 1964. The vertex set is the natural numbers
(including zero).

For $i, j \in \mathbb{N}$, $i < j$, then i and j are joined if and only if the ith digit in j
(in base 2) is 1.

Example
Since $88 = 8 + 16 + 64 = 2^3 + 2^4 + 2^6$ the numbers less that 88 that
are adjacent to 88 are just \{3, 4, 6\}. Of course, many numbers greater
than 88 will also be adjacent to 88 (for example 2^{88} will be).
The random graph

Consider the following property of graphs:

(*) For any two finite disjoint sets U and V of vertices, there exists a vertex w adjacent to every vertex in U and to no vertex in V.

Theorem

There exists a countably infinite graph R satisfying property (*), and it is unique up to isomorphism. The graph R is homogeneous.

Existence. The graph R defined above satisfies property (*).

Uniqueness and homogeneity. Both follow from a back-and-forth argument. Property (*) is used to extend the domain (or range) of any isomorphism between finite substructures one vertex at a time.
Fraïssé’s theorem

Definition
A relational structure M is homogeneous if any isomorphism between finite induced substructures of M extends to an automorphism of M. The age of M is the class of isomorphism types of its finite substructures.

Fraïssé (1953) showed how to recognise the existence of homogeneous structures from their ages.

A class C is the age of a countable homogeneous structure M if and only if C is closed under isomorphism, closed under taking substructures, contains only countably many structures up to isomorphism, and satisfies the amalgamation property. If these conditions hold, then M is unique, C is called a Fraïssé class, and M is called the Fraïssé limit of the class C.
The amalgamation property says that two structures in C with isomorphic substructures can be ‘glued together’, inside a larger structure of C, in such a way that the substructures are identified.

(AP) Given $B_1, B_2 \in C$ and isomorphism $f : A_1 \rightarrow A_2$ with $A_i \subseteq B_i$ ($i = 1, 2$), $\exists C \in C$ in which B_1 and B_2 are embedded so that A_1 and A_2 are identified according to f.
Countable homogeneous graphs

Examples

- The class of all finite graphs is a Fraïssé class. Its Fraïssé limit is the random graph R.
- The class of all finite graphs not embedding K_n (for some fixed n) is a Fraïssé class. We call the Fraïssé limit the countable generic K_n-free graph.

Theorem (Lachlan and Woodrow (1980))

Let Γ be a countably infinite homogeneous graph. Then Γ is isomorphic to one of: the random graph, a disjoint union of complete graphs (or its complement), the generic K_n-free graph (or its complement).
Outline

Introduction
 Graphs, automorphisms, and vertex-transitivity

Two notions of symmetry
 Distance-transitive graphs
 Homogeneous graphs

An intermediate notion
 Connected-homogeneous graphs
Connected-homogeneous graphs

Distance-transitive graphs - classification incomplete

Homogeneous graph - classified

Question. Do there exist natural classes between homogeneous and distance-transitive that can be classified?

Definition
A graph Γ is *connected-homogeneous* if any isomorphism between connected finite induced subgraphs extends to an automorphism.

$\text{homogeneous } \Rightarrow \text{connected-homogeneous } \Rightarrow \text{distance-transitive}$
Gardiner classified the finite connected-homogeneous graphs.

Theorem (Gardiner (1978))

A finite graph is connected-homogeneous if and only if it is isomorphic to a disjoint union of copies of one of the following:

1. a finite homogeneous graph
2. complement of a perfect matching
3. cycle C_n ($n \geq 5$)
4. the line graph $L(K_{s,s})$ of a complete bipartite graph $K_{s,s}$ ($s \geq 3$)
5. Petersen’s graph
6. the graph obtained by identifying antipodal vertices of the 5-dimensional cube Q_5
Infinite connected-homogeneous graphs

Theorem (RG, Macpherson (in preparation))

Any countable connected-homogeneous graph is isomorphic to the disjoint union of a finite or countable number of copies of one of the following:

1. a finite connected-homogeneous graph;
2. a homogeneous graph;
3. the random bipartite graph;
4. the complement of a perfect matching;
5. the line graph of a complete bipartite graph \(K_{\mathbb{N}_0,\mathbb{N}_0} \);
6. a graph \(X_{\kappa_1,\kappa_2} \) with \(\kappa_1, \kappa_2 \in (\mathbb{N} \setminus \{0\}) \cup \{\mathbb{N}_0\} \).

(The proof relies on the Lachlan-Woodrow classification of fully homogeneous graphs.)
Possible future work

Consider connected-homogeneity for other kinds of relational structure.

Schmerl (1979) classified the countable homogeneous posets. It turns out that weakening homogeneity to connected-homogeneity here essentially gives rise to no new examples.

Theorem (RG, Macpherson (in preparation))

A countable poset is connected-homogeneous if and only if it is isomorphic to a disjoint union of a countable number of isomorphic copies of some homogeneous countable poset.

The corresponding result for digraphs seems to be difficult.